Part Number Hot Search : 
S5856 71101 A28F010 ZHX3403 A8140130 BC547C 34071 HCPL2300
Product Description
Full Text Search
 

To Download NCP4626DMX045TCG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2011 may, 2011 ? rev. 1 1 publication order number: ncp4626/d ncp4626 300 ma, low dropout voltage regulator with reverse current protection the ncp4626 is a cmos 300 ma low dropout linear regulator with a wide input voltage range of 3.5 v to 16 v, low supply current and high output voltage accuracy. through an eco mode selector pin the device can be operated in low power mode to reduce quiescent current or fast mode for better transient response and lower dropout. the ncp4626 is suitable for applications where the vout pin voltage may be higher than the vin pin voltage as it is protected against reverse current. the device has a maximum input voltage tolerance of 18 v, comes with or without an auto ? discharge feature on the output, and is available in a choice of xdfn, sot89 and sot23 packages. features ? operating input voltage range: 3.5 v to 16.0 v ? output voltage range: 2.0 to 15.0 v (available in 0.1 v steps) ? low quiescent current (6 ua typ.) in low power mode ? dropout voltage: 550 mv typ. (i out = 300 ma, v out = 5 v, fast mode) 700 mv typ. (i out = 300 ma, v out = 5 v, low power mode) ? output voltage accuracy: 1.5% (fast mode) 2.5% (low power mode) ? high psrr: 60 db at 1 khz ? current fold back protection ? thermal shutdown protection ? stable with a c in = 2.2  f and c out = 4.7  f ceramic capacitors ? available in 1.6x1.6 xdfn6, sot89 ? 5 and sot23 ? 5 package ? these are pb ? free devices typical applications ? digital home appliances ? audio visual equipment ? battery backup circuits vin vout ce gnd c1 c2 2  2 vin vout ncp4626x ae 4  7 figure 1. typical application schematic http://onsemi.com see detailed ordering and shipping information in the package dimensions section on p age 25 of this data sheet. ordering information xdfn6 case 711ac xxx, xxxx = specific device code m, mm = date code a = assembly location y = year w = work week  = pb ? free package marking diagrams (*note: microdot may be in either location) sot ? 89 5 case 528ab sot ? 23 ? 5 case 1212 xxx m xxx xmm 1 1 6 xxx xmm
ncp4626 http://onsemi.com 2 ncp4626hxxxxxxxx ncp4626dxxxxxxxx figure 2. simplified schematic block diagram short protection vref vin ce gnd vout eco peak current protection reverse detector thermal shutdown short protection vref vin ce gnd vout eco peak current protection reverse detector thermal shutdown pin function description pin no. xdfn (note 1) pin no. sot89 pin no. sot23 pin name description 1 4 1 eco mode selector pin. h ? fast mode, l ? low power mode 3 5 5 vin input voltage pin 4 1 4 vout output voltage pin 5 2 2 gnd ground pin 1 3 3 ce chip enable pin ( ?h? enabled) 2 ? ? nc no connection 1. tab is connected to gnd. tab should be connected to gnd, but leaving it unconnected is also acceptable
ncp4626 http://onsemi.com 3 absolute maximum ratings rating symbol value unit input voltage (note 2) v in ? 0.3 to 18.0 v output voltage v out ? 0.3 to 18.0 v chip enable input v ce ? 0.3 to 18.0 v mode selector input v eco ? 0.3 to v in + 0.3 18.0 v output current i out 400 ma power dissipation xdfn p d 640 mw power dissipation sot89 900 power dissipation sot23 420 maximum junction temperature t j(max) 150 c operation temperature rnage t a ? 40 to 85 c storage temperature t stg ? 55 to 125 c esd capability, human body model (note 3) esd hbm 2000 v esd capability, machine model (note 3) esd mm 200 v stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above t he recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may af fect device reliability. 2. refer to electrical characteristis and application information for safe operating area. 3. this device series incorporates esd protection and is tested by the following methods: esd human body model tested per aec ? q100 ? 002 (eia/jesd22 ? a114) esd machine model tested per aec ? q100 ? 003 (eia/jesd22 ? a115) latchup current maximum rating tested per jedec standard: jesd78. thermal characteristics rating symbol value unit thermal characteristics, xdfn6 thermal resistance, junction ? to ? air r  ja 156 c/w thermal characteristics, sot23 ? 5 thermal resistance, junction ? to ? air r  ja 238 c/w thermal characteristics, sot89 ? 5 thermal resistance, junction ? to ? air r  ja 111 c/w electrical characteristics ? 40 c t a 85 c; v in = v ce = v out(nom) + 3.0 v; i out = 1 ma, c in = 2.2  f, c out = 4.7  f, unless otherwise noted. typical values are at t a = +25 c parameter test conditions symbol min typ max unit operating input voltage 2.0 v v out < 3.0 v v in 3.5 14.0 v 3.0 v v out 16.0 output voltage fast mode, v eco = v in t a = +25 c v out x0.985 x1.015 v t a = ? 40 to 85 c x0.970 x1.030 low power mode, v eco = v in t a = +25 c x0.975 x1.025 t a = ? 40 to 85 c x0.960 x1.040 output voltage deviation fast mode to low power mode and back  v out ? 1.5 0 1.5 % output voltage temp. coefficient t a = ? 40 to 85 c 80 ppm/ c line regulation v in = v out + 0.5 v to 16 v (if v out <3.0 v, 3.5 v to 14 v) line reg 0.02 0.10 %/v
ncp4626 http://onsemi.com 4 electrical characteristics ? 40 c t a 85 c; v in = v ce = v out(nom) + 3.0 v; i out = 1 ma, c in = 2.2  f, c out = 4.7  f, unless otherwise noted. typical values are at t a = +25 c parameter unit max typ min symbol test conditions load regulation i out = 1 ma to 300 ma fast mode, v eco = v in load reg 50 120 mv low power, v eco = gnd 60 130 dropout voltage i out = 300 ma, fast mode, v eco = v in 2.0 v v out < 2.5 v v do 1.20 1.80 v 2.5 v v out < 3.3 v 1.00 1.50 3.3 v v out < 5.0 v 0.75 1.00 5.0 v v out < 12.0 v 0.55 0.75 12.0 v v out 0.40 0.60 i out = 300 ma, low power mode, v eco = gnd 2.0 v v out < 2.5 v 2.50 3.00 2.5 v v out < 3.3 v 2.00 2.50 3.3 v v out < 5.0 v 1.50 1.80 5.0 v v out < 12.0 v 0.70 1.00 12.0 v v out 0.40 0.60 output current i out 300 ma short current limit v out = 0 v i sc 50 ma quiescent current v eco = v in , i out = 0 ma i q 50 100  a v eco = gnd, i out = 0 ma 6 15 standby current v in = 16.0 v (if v out < 3.0 v, v in = 14.0 v), t a = 25 c i stb 0.1 1  a ce and eco pin threshold voltage ce input voltage ?h? v ceh 1.6 v in v ce input voltage ?l? v cel 0 0.6 power supply rejection ratio v in = v eco = v out + 1.0 v,  v in = 0.2 v pp , f = 1 khz 2.0 v v out < 5.0 v psrr 70 db 5.0 v v out 60 output noise voltage v in = 6.0 v, v out = 3.0 v, i out = 30 ma, f = 10 hz to 100 khz v n 90  v rms thermal shutdown temperature t sd 150 c thermal shutdown release temperature t sdr 130 c reverse current v out > 0.6 v, 0 v v in 16 v i rev 0 0.1  a low output nch tr. on resistance d version only, v in = 5 v, v ce = 0 v, v out = 0.3 v r low 150 
ncp4626 http://onsemi.com 5 typical characteristics 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 700 figure 3. output voltage vs. output current 3.0 v, eco = l i out (ma) v out (v) v in = 4.5 v 4.8 v 5.0 v 5.5 v 6.0 v figure 4. output voltage vs. output current 3.0 v, eco = h 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 700 v out (v) i out (ma) v in = 4.5 v 5.0 v 5.5 v 6.0 v 4.8 v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 700 figure 5. output voltage vs. output current 3.3 v, eco = l v out (v) i out (ma) 5.0 v 5.5 v 6.0 v 6.5 v v in = 4.8 v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 700 i out (ma) v out (v) figure 6. output voltage vs. output current 3.3 v, eco = h 5.0 v 5.5 v 6.0 v 6.5 v v in = 4.8 v 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 400 500 600 700 figure 7. output voltage vs. output current 5.0 v, eco = l v out (v) i out (ma) 7.0 v 5.5 v 6.0 v v in = 5.7 v 8.0 v 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 400 500 600 700 i out (ma) v out (v) figure 8. output voltage vs. output current 5.0 v, eco = h 7.0 v 5.5 v 6.0 v v in = 5.7 v 8.0 v
ncp4626 http://onsemi.com 6 typical characteristics 0.0 0.3 0.6 0.9 1.2 1.5 0 50 100 150 200 250 300 v do (v) t j = 85 c 25 c ? 40 c i out (ma) figure 9. dropout voltage vs. output current 3.0 v version, eco = l 0.0 0.3 0.6 0.9 1.2 1.5 0 50 100 150 200 250 300 v do (v) i out (ma) figure 10. dropout voltage vs. output current 3.0 v version, eco = h t j = 85 c 25 c ? 40 c 0.0 0.3 0.6 0.9 1.2 1.5 0 50 100 150 200 250 300 v do (v) i out (ma) figure 11. dropout voltage vs. output current 3.3 v version, eco = l t j = 85 c 25 c ? 40 c 0.0 0.3 0.6 0.9 1.2 1.5 0 50 100 150 200 250 300 v do (v) i out (ma) figure 12. dropout voltage vs. output current 3.3 v version, eco = h t j = 85 c 25 c ? 40 c 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 300 v do (v) i out (ma) figure 13. dropout voltage vs. output current 5.0 v version, eco = l t j = 85 c 25 c ? 40 c 0.0 0.2 0.4 0.6 0.8 1.0 0 50 100 150 200 250 300 v do (v) i out (ma) figure 14. dropout voltage vs. output current 5.0 v version, eco = h t j = 85 c 25 c ? 40 c
ncp4626 http://onsemi.com 7 typical characteristics 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 ? 40 ? 200 20406080 t j , junction temperature ( c) v out (v) figure 15. output voltage vs. temperature, 3.0 v version, eco = l v in = 6.0 v i out = 1 ma 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 t j , junction temperature ( c) v out (v) figure 16. output voltage vs. temperature, 3.0 v version, eco = h v in = 6.0 v i out = 1 ma ? 40 ? 200 20406080 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 ? 40 ? 200 20406080 t j , junction temperature ( c) v out (v) figure 17. output voltage vs. temperature, 3.3 v version, eco = l v in = 6.3 v i out = 1 ma 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 t j , junction temperature ( c) v out (v) figure 18. output voltage vs. temperature, 3.3 v version, eco = h v in = 6.3 v i out = 1 ma ? 40 ? 200 20406080 4.95 4.96 4.97 4.98 4.99 5.00 5.01 5.02 5.03 5.04 5.05 t j , junction temperature ( c) v out (v) figure 19. output voltage vs. temperature, 5.0 v version, eco = l v in = 8.0 v i out = 1 ma ? 40 ? 200 20406080 4.95 4.96 4.97 4.98 4.99 5.00 5.01 5.02 5.03 5.04 5.05 t j , junction temperature ( c) v out (v) figure 20. output voltage vs. temperature, 5.0 v version, eco = h ? 40 ? 200 20406080 v in = 8.0 v i out = 1 ma
ncp4626 http://onsemi.com 8 typical characteristics 0 1 2 3 4 5 6 7 8 9 10 0246810121416 i gnd (  a) v in , input voltage (v) figure 21. supply current vs. input voltage, 3.0 v version, eco = l 0 10 20 30 40 50 60 70 0246810121416 v in , input voltage (v) figure 22. supply current vs. input voltage, 3.0 v version, eco = h i gnd (  a) 0 1 2 3 4 5 6 7 8 9 10 0246810121416 i gnd (  a) v in , input voltage (v) figure 23. supply current vs. input voltage, 3.3 v version, eco = l 0 10 20 30 40 50 60 70 0246810121416 v in , input voltage (v) figure 24. supply current vs. input voltage, 3.3 v version, eco = h i gnd (  a) 0 1 2 3 4 5 6 7 8 9 10 0246810121416 i gnd (  a) v in , input voltage (v) figure 25. supply current vs. input voltage, 5.0 v version, eco = l 0 10 20 30 40 50 60 70 0246810121416 v in , input voltage (v) figure 26. supply current vs. input voltage, 5.0 v version, eco = h i gnd (  a)
ncp4626 http://onsemi.com 9 typical characteristics 0 1 2 3 4 5 6 7 8 9 10 i gnd (  a) t j , junction temperature ( c) figure 27. supply current vs. temperature, 3.0 v version, eco = l v in = 6.0 v 40 20 0 20 40 60 80 0 10 20 30 40 50 60 70 ? 40 ? 200 20406080 t j , junction temperature ( c) figure 28. supply current vs. temperature, 3.0 v version, eco = h i gnd (  a) v in = 6.0 v 0 1 2 3 4 5 6 7 8 9 10 i gnd (  a) t j , junction temperature ( c) figure 29. supply current vs. temperature, 3.3 v version, eco = l v in = 6.3 v 40 20 0 20 40 60 80 0 10 20 30 40 50 60 70 t j , junction temperature ( c) figure 30. supply current vs. temperature, 3.3 v version, eco = h i gnd (  a) v in = 6.3 v 0 1 2 3 4 5 6 7 8 9 10 i gnd (  a) t j , junction temperature ( c) figure 31. supply current vs. temperature, 5.0 v version, eco = l v in = 8.0 v 40 20 0 20 40 60 80 40 20 0 20 40 60 80 0 10 20 30 40 50 60 70 t j , junction temperature ( c) figure 32. supply current vs. temperature, 5.0 v version, eco = h i gnd (  a) v in = 8.0 v 40 20 0 20 40 60 80
ncp4626 http://onsemi.com 10 typical characteristics 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0246810121416 v in , input voltage (v) i out = 50 ma 30 ma 1 ma figure 33. output voltage vs. input voltage, 3.0 v version, eco = l v out (v) 0 ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0246810121416 v in , input voltage (v) figure 34. output voltage vs. input voltage, 3.0 v version, eco = h v out (v) i out = 50 ma 30 ma 1 ma 0 ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 4 6 8 10 12 14 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 i out = 50 ma 30 ma 1 ma 0 ma v in , input voltage (v) figure 35. output voltage vs. input voltage, 3.3 v version, eco = l v out (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0246810121416 v in , input voltage (v) figure 36. output voltage vs. input voltage, 3.3 v version, eco = h v out (v) i out = 50 ma 30 ma 1 ma 0 ma 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0246810121416 v in , input voltage (v) figure 37. output voltage vs. input voltage, 5.0 v version, eco = l v out (v) i out = 50 ma 30 ma 1 ma 0 ma 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0246810121416 v in , input voltage (v) figure 38. output voltage vs. input voltage, 5.0 v version, eco = h v out (v) i out = 50 ma 30 ma 1 ma 0 ma
ncp4626 http://onsemi.com 11 typical characteristics 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 39. psrr, 3.0 v version, v in = 6.0 v, eco = l psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 40. psrr, 3.0 v version, v in = 6.0 v, eco = h psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 41. psrr, 3.3 v version, v in = 6.3 v, eco = l psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 42. psrr, 3.3 v version, v in = 6.3 v, eco = h psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 43. psrr, 5.0 v version, v in = 8.0 v, eco = l psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 figure 44. psrr, 5.0 v version, v in = 8.0 v, eco = h psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma 300 ma
ncp4626 http://onsemi.com 12 typical characteristics figure 45. output voltage noise, 3.0 v version, v in = 6.0 v, i out = 30 ma, eco = l 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 46. output voltage noise, 3.0 v version, v in = 6.0 v, i out = 30 ma, eco = h 0 2.0 4.0 6.0 8.0 10 12 14 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 47. output voltage noise, 3.3 v version, v in = 6.3 v, i out = 30 ma, eco = l 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 48. output voltage noise, 3.3 v version, v in = 6.3 v, i out = 30 ma, eco = h 0 2.0 4.0 6.0 8.0 10 12 14 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 49. output voltage noise, 5.0 v version, v in = 8.0 v, i out = 30 ma, eco = l 0 2.0 4.0 6.0 8.0 10 12 14 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 50. output voltage noise, 5.0 v version, v in = 8.0 v, i out = 30 ma, eco = h 0 2.0 4.0 6.0 8.0 10 12 14 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz)
ncp4626 http://onsemi.com 13 typical characteristics figure 51. line transients, 3.0 v version, t r = t f = 5  s, i out = 30 ma, eco = l 2.85 2.90 2.95 3.00 3.05 3.10 3.15 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 5.0 5.5 6.0 6.5 v out (v) t (  s) v in (v) figure 52. line transients, 3.0 v version, t r = t f = 5  s, i out = 30 ma, eco = h 2.985 2.990 2.995 3.000 3.005 3.010 0 40 80 120 160 200 240 280 320 360 400 5.0 5.5 6.0 6.5 v out (v) t (  s) v in (v) figure 53. line transients, 3.3 v version, t r = t f = 5  s, i out = 30 ma, eco = l 3.15 3.20 3.25 3.30 3.35 3.40 3.45 5.3 5.8 6.3 6.8 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v in (v)
ncp4626 http://onsemi.com 14 typical characteristics figure 54. line transients, 3.3 v version, t r = t f = 5  s, i out = 30 ma, eco = h 3.285 3.290 3.295 3.300 3.305 3.310 0 40 80 120 160 200 240 280 320 360 400 5.3 5.8 6.3 6.8 v out (v) t (  s) v in (v) figure 55. line transients, 5.0 v version, t r = t f = 5  s, i out = 30 ma, eco = l 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.85 4.90 4.95 5.00 5.05 5.10 5.15 7.0 7.5 8.0 8.5 v out (v) t (ms) v in (v) figure 56. line transients, 5.0 v version, t r = t f = 5  s, i out = 30 ma, eco = h 4.985 4.990 4.995 5.000 5.005 5.010 0 40 80 120 160 200 240 280 320 360 400 7.0 7.5 8.0 8.5 v out (v) t (  s) v in (v)
ncp4626 http://onsemi.com 15 typical characteristics figure 57. load transients, 3.0 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = l 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) i out (ma) 2.7 2.8 2.9 3.0 3.1 3.2 0 15 30 45 figure 58. load transients, 3.0 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = h 2.97 2.98 2.99 3.00 3.01 3.02 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) t (  s) i out (ma) figure 59. load transients, 3.3 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = l 3.0 3.1 3.2 3.3 3.4 3.5 0 15 30 45 v out (v) t (ms) i out (ma) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
ncp4626 http://onsemi.com 16 typical characteristics figure 60. load transients, 3.3 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = h 3.27 3.28 3.29 3.30 3.31 3.32 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) t (  s) i out (ma) figure 61. load transients, 5.0 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = l 4.7 4.8 4.9 5.0 5.1 5.2 0 15 30 45 v out (v) t (ms) i out (ma) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 figure 62. load transients, 5.0 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = h 4.97 4.98 4.99 5.00 5.01 5.02 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) t (  s) i out (ma)
ncp4626 http://onsemi.com 17 typical characteristics figure 63. load transients, 3.0 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = l 2.7 2.8 2.9 3.0 3.1 3.2 0 50 100 150 v out (v) t (ms) i out (ma) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 figure 64. load transients, 3.0 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = h 2.97 2.98 2.99 3.00 3.01 3.02 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) t (  s) i out (ma) figure 65. load transients, 3.3 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = l 3.0 3.1 3.2 3.3 3.4 3.5 0 50 100 150 v out (v) t (ms) i out (ma) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
ncp4626 http://onsemi.com 18 typical characteristics figure 66. load transients, 3.3 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = h 3.28 3.28 3.29 3.30 3.31 3.32 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) t (  s) i out (ma) figure 67. load transients, 5.0 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = l 4.7 4.8 4.9 5.0 5.1 5.2 0 50 100 150 v out (v) t (ms) i out (ma) 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 figure 68. load transients, 5.0 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = h 4.97 4.98 4.99 5.00 5.01 5.02 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) t (  s) i out (ma)
ncp4626 http://onsemi.com 19 typical characteristics figure 69. load transients, 3.0 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = l 1.5 2.0 2.5 3.0 3.5 4.0 4.5 012345678910 0 150 300 450 v out (v) t (ms) i out (ma) figure 70. load transients, 3.0 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 6.0 v, eco = h 2.9 2.9 3.0 3.0 3.1 3.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 150 300 450 v out (v) t (ms) i out (ma) figure 71. load transients, 3.3 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = l 1.8 2.3 2.8 3.3 3.8 4.3 4.8 012345678910 0 150 300 450 v out (v) t (ms) i out (ma)
ncp4626 http://onsemi.com 20 typical characteristics figure 72. load transients, 3.3 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 6.3 v, eco = h 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 v out (v) t (ms) i out (ma) 3.15 3.20 3.25 3.30 3.35 3.40 0 150 300 450 figure 73. load transients, 5.0 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = l 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 012345678910 0 150 300 450 v out (v) t (ms) i out (ma) figure 74. load transients, 5.0 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 8.0 v, eco = h 4.85 4.90 4.95 5.00 5.05 5.10 0 150 300 450 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 v out (v) t (ms) i out (ma)
ncp4626 http://onsemi.com 21 typical characteristics figure 75. start ? up, 3.0 v version, v in = 6.0 v, eco = l ? 1 0 1 2 3 4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 0 3 6 9 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 76. start ? up, 3.0 v version, v in = 6.0 v, eco = h ? 1 0 1 2 3 4 0 20 40 60 80 100 120 140 160 180 200 0 3 6 9 v out (v) t (  s) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 77. start ? up, 3.3 v version, v in = 6.3 v, eco = l ? 1 0 1 2 3 4 0.00 3.15 6.30 9.45 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable
ncp4626 http://onsemi.com 22 typical characteristics figure 78. start ? up, 3.3 v version, v in = 6.3 v, eco = h ? 1 0 1 2 3 4 0 20 40 60 80 100 120 140 160 180 200 0.00 3.15 6.30 9.45 v out (v) t (  s) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 79. start-up, 5.0 v version, v in = 8.0 v, eco = l ? 1 0 1 2 3 4 5 0 4 8 12 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 80. start-up, 5.0 v version, v in = 8.0 v, eco = h ? 1 0 1 2 3 4 5 0 20 40 60 80 100 120 140 160 180 200 0 4 8 12 v out (v) t (  s) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable
ncp4626 http://onsemi.com 23 typical characteristics figure 81. shutdown, 3.0 v version d, v in = 6.0 v ? 1 0 1 2 3 4 0 3 6 9 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 82. shutdown, 3.3 v version d, v in = 6.3 v ? 1 0 1 2 3 4 0.00 3.15 6.30 9.45 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable figure 83. shutdown, 5.0 v version d, v in = 8.0 v ? 1 0 1 2 3 4 5 0 4 8 12 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 v out (v) t (ms) v ce (v) i out = 150 ma i out = 1 ma i out = 30 ma chip enable
ncp4626 http://onsemi.com 24 application information a typical application circuit for ncp4626 series is shown in figure 84. vin vout ce gnd c1 c2 2  2 vin vout ncp4626x ae 4  7 figure 84. typical application schematic input decoupling capacitor (c1) a 2.2  f (or larger) ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the ncp4626. higher capacitor values and lower esr improves line transient response. output decoupling capacitor (c2) a 4.7  f (or larger) ceramic output decoupling capacitor is sufficient to achieve stable operation of the ic. it is necessary to use a capacitor with good frequency characteristics and low esr. the capacitor should be connected as close as possible to the output and ground pins. larger capacitor values and lower esr improves dynamic parameters. enable operation the enable pin ce may be used to turn the regulator on and off. the ic is switched on when a high level voltage is applied to the ce pin. the enable pin has an internal pull down resistor. if the enable function is not needed, connect the ce pin to vin. output discharger the d version of the ncp4626 includes a transistor between vout and gnd that is used for faster dischar ging of the output capacitor. this function is activated when the ic goes into disable mode. current limit this regulator includes fold-back type current limit circuit. this type of protection doesn?t limit current up to current capability in normal operation, but when over current occurs, output voltage and current decrease until over current condition ends. typical characteristics of this protection type can be observed in th e output voltage versus output current graphs shown in the typical characteristics chapter of this datasheet. eco function the ic can be switched between two modes by eco pin. one mode is low power mode, where ic?s self current consumption is low , but ic has slower dynamic behavior or in to fast mode, where current consumption is higher, but the ic has better dynamic response and lower dropout voltage. do not leave the eco pin unconnected or between v ceh and v cel voltage levels as this may cause indefinite and unexpected currents flows internally. thermal considerations as power across the ic increases, it might become necessary to provide some thermal relief. the maximum power dissipation supported by the device is dependent upon board design and layout. mounting pad configuration on the pcb, the board material, and the ambient temperature effect the rate of temperature rise for the part. that is to say, when the device has good thermal conductivity through the pcb, the junction temperature will be relatively low with high power dissipation applications. the ic includes internal thermal shutdown circuit that stops the regulator operating if the junction temperature is higher than 150 c. after shutdown, when the junction temperature decreases below 130 c, the voltage regulator would restarts. as long as the high power dissipation condition exists, the regulator will start and stop repeatedly to protect itself against overheating. care should be taken in the pcb layout to try to avoid this temperature cycling condition. pcb layout make the vin and gnd lines as large as possible. if their impedance is high, noise pickup or unstable operation may result. connect capacitors c1 and c2 as close as possible to the ic, and make wiring as short as possible. the tab under the xdfn package is internally connected to gnd: it is best practice to connect it to gnd on the pcb, but leaving it unconnected is also acceptable.
ncp4626 http://onsemi.com 25 ordering information device nominal output voltage description marking package shipping ? ncp4626dsn030t1g 3.0 v auto discharge 630 sot23 (pb ? free) 3000 / tape & reel ncp4626dsn033t1g 3.3 v auto discharge 633 sot23 (pb ? free) 3000 / tape & reel ncp4626dsn045t1g 4.5 v auto discharge 645 sot23 (pb ? free) 3000 / tape & reel ncp4626dsn050t1g 5.0 v auto discharge 650 sot23 (pb ? free) 3000 / tape & reel ncp4626hsn030t1g 3.0 v standard 430 sot23 (pb ? free) 3000 / tape & reel ncp4626hsn033t1g 3.3 v standard 433 sot23 (pb ? free) 3000 / tape & reel ncp4626hsn045t1g 4.5 v standard 445 sot23 (pb ? free) 3000 / tape & reel ncp4626hsn050t1g 5.0 v standard 450 sot23 (pb ? free) 3000 / tape & reel ncp4626dmx030tcg 3.0 v auto discharge ch11 xdfn (pb ? free) 5000 / tape & reel ncp4626dmx033tcg 3.3 v auto discharge ch14 xdfn (pb ? free) 5000 / tape & reel NCP4626DMX045TCG 4.5 v auto discharge ch26 xdfn (pb ? free) 5000 / tape & reel ncp4626dmx050tcg 5.0 v auto discharge ch31 xdfn (pb ? free) 5000 / tape & reel ncp4626hmx030tcg 3.0 v standard cf11 xdfn (pb ? free) 5000 / tape & reel ncp4626hmx033tcg 3.3 v standard cf14 xdfn (pb ? free) 5000 / tape & reel ncp4626hmx045tcg 4.5 v standard cf26 xdfn (pb ? free) 5000 / tape & reel ncp4626hmx050tcg 5.0 v standard cf31 xdfn (pb ? free) 5000 / tape & reel ?for information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specifications brochure, brd8011/d. *to order other package and voltage variants, please contact your on semiconductor sales representative.
ncp4626 http://onsemi.com 26 package dimensions xdfn6 1.6x1.6, 0.5p case 711ac ? 01 issue o notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. coplanarity applies to the exposed pad as well as the terminals. a b e d d2 e2 bottom view b e 6x e3 3x 2x 0.05 c pin one reference top view 2x 0.05 c note 3 a a1 0.05 c 0.05 c c seating plane side view l 2x 1 3 4 6 dim min max millimeters a ??? 0.40 a1 0.00 0.05 e3 0.15 ref b 0.15 0.25 d 1.60 bsc d2 1.25 1.35 e 1.60 bsc e2 0.65 0.75 e 0.50 bsc l 0.15 0.25 *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. mounting footprint* 1.70 0.77 0.50 0.38 6x 1.79 dimensions: millimeters 0.36 1 6x recommended l1 0.05 bsc l1 a m 0.05 b c a m 0.05 b c a m 0.05 b c pitch package outline
ncp4626 http://onsemi.com 27 package dimensions sot ? 89, 5 lead case 528ab ? 01 issue o mounting footprint* recommended c 0.10 top view side view bottom view c h 1 dim min max millimeters a 1.40 1.60 b1 0.37 0.57 b 0.32 0.52 c 0.30 0.50 d 4.40 4.60 d2 1.40 1.80 e 2.40 2.60 notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. lead thickness includes lead finish. 4. dimensions d and e do not include mold flash, protrusions, or gate burrs. 5. dimensions l, l2, l3, l4, l5, and h are meas- ured at datum plane c. e 1.40 1.60 l 1.10 1.50 h 4.25 4.45 l2 0.80 1.20 l3 0.95 1.35 l4 0.65 1.05 l5 0.20 0.60 *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. d e a c 23 54 l l5 e e b b1 l2 d2 l4 l3 2x 0.62 dimensions: millimeters 1 2x 1.50 1.30 2.79 0.45 1.50 1.65 4.65 4x 0.57 1.75 1
ncp4626 http://onsemi.com 28 package dimensions dim min max millimeters a1 0.00 0.10 a2 1.00 1.30 b 0.30 0.50 c 0.10 0.25 d 2.80 3.00 e 2.50 3.10 e1 1.50 1.80 e 0.95 bsc e1 1.90 bsc l l1 0.45 0.75 notes: 1. dimensions are in millimeters. 2. interpret dimensions and tolerances per asme y14.5m, 1994. 3. datum c is a seating plane. a 1 5 23 4 d e1 b l1 e e e1 c m 0.10 c s b s a b 5x a2 a1 s 0.05 c l 0.20 --- sot ? 23 case 1212 ? 01 issue o on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5773 ? 3850 ncp4626/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of NCP4626DMX045TCG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X